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Abstract In this paper we present a three-phase heuristic for the Capacitated Location-
Routing Problem. In the first stage, we apply a GRASP followed by local search
procedures to construct a bundle of solutions. In the second stage, an integer-linear
program (ILP) is solved taking as input the different routes belonging to the solutions
of the bundle, with the objective of constructing a new solution as a combination of
these routes. In the third and final stage, the same ILP is iteratively solved by column
generation to improve the solutions found during the first two stages. The last two

C. Contardo (B)
Département de management et technologie, ESG UQÀM, 315 rue Ste-Catherine Est,
Montréal, QC H2X 3X2, Canada
e-mail: claudio.contardo@gerad.ca

C. Contardo
Groupe d’études et de recherche en analyse des décisions (GERAD), 3000 chemin de la
Côte-Sainte-Catherine, Montréal , QC H3T 2A7, Canada

J.-F. Cordeau
Canada Research Chair in Logistics and Transportation, HEC Montréal, 3000 chemin de la
Côte-Sainte-Catherine, Montréal , QC H3T 2A7, Canada
e-mail: jean-francois.cordeau@cirrelt.ca

B. Gendron
Département d’informatique et de recherche opérationnelle, Université de Montréal,
C.P. 6128, succ. Centre-ville, Montréal , QC H3C 3J7, Canada
e-mail: bernard.gendron@cirrelt.ca

J.-F. Cordeau · B. Gendron
Centre interuniversitaire de recherche sur les réseaux d’entreprise la logistique et le transport
(CIRRELT), C.P. 6128, succ. Centre-ville, Montréal, QC H3C 3J7, Canada

123



2 C. Contardo et al.

stages are based on a new model, the location-reallocation model, which generalizes
the capacitated facility location problem and the reallocation model by simultaneously
locating facilities and reallocating customers to routes assigned to these facilities.
Extensive computational experiments show that our method is competitive with the
other heuristics found in the literature, yielding the tightest average gaps on several
sets of instances and being able to improve the best known feasible solutions for some
of them.

Keywords Location-routing · Column generation ·Metaheuristic

1 Introduction

In the capacitated location-routing problem (CLRP) we are given a set of potential
facilities I and a set of customers J . To each facility i ∈ I we associate a fixed
setup cost fi and a capacity bi . To each customer j ∈ J we associate a demand d j .
An unlimited, homogeneous fleet must be routed from the open facilities to serve the
demand of the customers in J . To each vehicle is associated a capacity Q, and to every
pair of nodes i and j is associated a traveling cost ci j . The goal is to select a subset of
facilities and to design vehicle routes around these facilities in order to (1) visit each
customer once, (2) respect both vehicle and facility capacities and (3) minimize the
total cost.

The CLRP is an NP-hard combinatorial optimization problem since it generalizes
two well known NP-hard problems: the capacitated facility location problem (CFLP)
and the capacitated vehicle routing problem (CVRP). Exact methods for this problem
include branch-and-cut (Belenguer et al. 2011; Contardo et al. 2011) and column
generation (Baldacci et al. 2011; Contardo et al. 2013). These methods are able to solve
instances with up to 200 customers. However, some instances with 100 customers
remain unsolved. To handle large size instances, Prins et al. (2007), Prodhon and
Prins (2008), Prodhon (2009), Prodhon (2011) and Duhamel et al. (2010) proposed
several metaheuristics. Among these, the method based on Lagrangean relaxation with
cooperative granular tabu search is the most effective for handling large instances of the
CLRP. This method combines the solution of an integer-linear program (ILP) (a CFLP)
solved by Lagrangean relaxation (for location decisions) followed by a granular tabu
search (for routing decisions). Pirkwieser and Raidl (2010) have introduced a variable
neighborhood search (VNS) algorithm for the periodic CLRP (PLRP) and the CLRP
based on the combination of a pure VNS with the solution of several ILPs. The ILPs
they consider include a location model (a two-index CFLP) and a reallocation model
(a set partitioning model). Hemmelmayr et al. (2012) have developed an adaptive large
neighborhood search (ALNS) heuristic for the CLRP. In an ALNS method, several
different neighborhoods are applied and ranked on the run according to their success in
improving solutions. In subsequent iterations, the highest ranked neighborhoods have
a larger probability of being chosen. Their algorithm is capable of improving the best
known solutions on several instances. Finally, Yu et al. (2010) proposed a simulated
annealing heuristic for the problem in which diversification is controlled by means
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A GRASP + ILP-based metaheuristic for the capacitated location-routing problem 3

of a temperature parameter to allow the deterioration of the solution in the hope of
escaping from local optima.

The main contributions of this paper are:

i. to introduce a new greedy randomized adaptive search procedure (GRASP) for
the CLRP that is competitive with the GRASP proposed by Prins et al. (2006) and
Duhamel et al. (2010) and which provides better average gaps on several sets of
instances.

ii. to introduce a novel location-reallocation model that takes into account the location
and the routing decisions simultaneously. The proposed model is based on a set-
partitioning formulation that generalizes both the CFLP and the reallocation model
of Franceschi et al. (2006), the first by adding the possibility of inserting customers
in the middle of the routes, and the second by adding the possibility of reallocating
whole routes to different facilities.

The location-reallocation model introduced here can also be seen as a restricted
CLRP in which some routing decisions are fixed, and thus also inherits all of the
cuts valid for the CLRP (Belenguer et al. 2011; Contardo et al. 2011). The addition
of these extra cuts plays an important role in the proposed heuristic. Indeed, the
strength of the model relies on the quality of the root relaxation lower bound. As a
pure branch-and-cut-and-price algorithm is computationally too demanding, column
generation is applied only at the root node, and even there by relying on some simple
pricing heuristics. The resulting ILP is then solved by means of a general-purpose
solver. Therefore, the strength of the linear relaxation lower bound is crucial for the
performance of the algorithm.

The rest of the paper is organized as follows. In Sect. 2 we give a general description
of our solution approach. In Sect. 3 we present two of the metaheuristics that are used
in our algorithm, namely a GRASP and a local search procedure used to improve solu-
tions. In Sect. 4 we introduce the location-reallocation model (LRM). We strengthen
it with valid inequalities and describe the pricing algorithm used to derive columns of
negative reduced cost. In Sect. 5 we introduce the two hybrid metaheuristics, namely a
solution blender heuristic and a local improvement heuristic, both of which are based
on the solution of the LRM. This is followed by computational results in Sect. 6 and
by conclusions in Sect. 7.

2 An overview of the complete algorithm

In this section we give a general description of the different parts of our algorithm,
and describe it by means of a pseudo-code. Our algorithm consists of four main
procedures: a GRASP, a Local Search heuristic (LS), a Solution Blender (SB) and a
Local Improvement Heuristic (LIH).

The first part of our algorithm is a new GRASP (Feo and Resende 1989) based on
the randomization of the so-called Extended Clarke and Wright Savings Algorithm
(ECWSA) introduced by Prins et al. (2006), a greedy insertion heuristic originally
introduced for multiple-depot vehicle routing problems. In the GRASP paradigm,
the greedy insertion heuristic is applied several times. Diversification is applied by
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allowing sub-optimal movements (randomly chosen) during the insertion algorithm.
At the end of each run, the constructed feasible solution is inserted into a pool of
solutions P . The details of our procedure will be given in Sect. 3.1.

The second part of our algorithm is Local Search (LS). A LS procedure is an iter-
ative algorithm that takes as input a feasible solution of the problem. At any iteration,
it inspects the feasible solutions lying inside a neighborhood of the current solution
and, if it finds a solution of lower cost, it replaces the current solution by the new
one before starting the next iteration. Otherwise, it stops and returns the best solution
found. In this article, we consider several types of neighborhoods, including neigh-
borhoods involving customers and facilities. This will be discussed in more detail in
Sect. 3.2.

The third part of our algorithm is what we call the Solution Blender (SB), a
method based on the solution of an integer-linear program, the location-reallocation
model. The LRM is a set-partitioning model in which three types of variables are
considered: location variables, assignment variables and routing variables. The first
two are polynomial in number while there is an exponential number of the latter.
Normally, such models are solved by column generation. However, in the SB heuris-
tic the set of routing variables is restricted to contain a fixed number of columns
defined in advance, and therefore no column generation is applied. The key of the
SB is to combine two procedures into one. On the one hand, it solves the prob-
lem of re-assigning routes to facilities. This type of neighborhood was introduced
by Prins et al. (2007) for the CLRP and later used by Pirkwieser and Raidl (2010).
On the other hand, it solves the problem of combining routes from different solu-
tions, which was introduced by Pirkwieser and Raidl (2010) for the CLRP. In the
SB heuristic, these two neighborhoods are inspected at once, thus solving the re-
assignment problem of routes to facilities and the combination problem of routes
belonging to different solutions, all at once. The details of the procedure are given in
Sect. 5.1.

The fourth component of our method is what we call the Local Improvement
Heuristic (LIH), a destroy-and-repair method inspired from the ALNS metaheuristic
(Røpke and Pisinger 2006). In this method, a destroy operator is applied to remove
customers from the current solution. The LRM is then solved by column generation,
with the aim of constructing a new feasible solution of better quality. The LIH uses a
parameter � ≤ |J | in the destroy operators to remove a target number � of customers
from the solution, which we denote by L I H(�). The details of the LIH will be
discussed in Sect. 5.2.

We now describe by means of a pseudo-code the complete algorithm. For a given
solution T of the CLRP, let v(T ) denote the cost of T . Also, let �0 be a parameter
representing a (usually small) number of customers.

3 Pure heuristics

In this section we describe the two pure heuristic procedures used in our algorithm,
namely the GRASP and the LS methods. We refer to these as pure heuristics to dis-
tinguish them from the ILP-based heuristics that will be introduced later.
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Algorithm 1 GRASP + ILP
1: Use GRASP + LS and build solution pool P .
2: Use SB and add the newly found solutions to P .
3: T ← arg min{v(S) : S ∈ P}.
4: �← �0.
5: repeat
6: Apply L I H(�) to T and let T ′ be the solution obtained.
7: if T ′ /∈ P then
8: P ← P ∪ T ′.
9: if v(T ′) < v(T ) then
10: T ← T ′ and go to 1.
11: end if
12: end if
13: Use SB and add the newly found solutions to P .
14: if a new solution T ′ was found with v(T ′) < v(T ) then
15: T ← T ′ and go to 1.
16: end if
17: Increase � by some positive value.
18: until some stopping criterion is met

3.1 GRASP

GRASP is a popular metaheuristic which, based on some simple greedy determin-
istic criterion, includes some randomization to diversify the search of the solution
space. This randomized greedy algorithm is applied several times, thus increasing
the likelihood of identifying a good quality solution. The randomization is usually
subject to what is called a restricted candidate list (RCL), for which a given greedy
criterion of the form “ pick x ′ = arg minx { f (x) : x ∈ X}” is replaced by “ Let
L contain the κ elements x ∈ X with smallest value of f (x). Pick x ′ randomly in
L”. For the CLRP, Prins et al. (2006) proposed a GRASP that they complemented
with path relinking. Their method is based on the so-called Extended Clarke and
Wright Savings Algorithm (ECWSA). In this paper we propose a variant of that
method, and explain how we apply randomization at three different levels of the
algorithm. Our method differs from that of Prins et al. (2006) mainly in the way the
initial assignments of customers to facilities are performed. Our method penalizes
the opening of a new facility by considering its opening cost in the evaluation of the
assignment, which is not taken into account in the original version of the ECWSA.
Our computational results show that the merging phase of the algorithm can take
advantage of this new evaluation rule to find solutions of higher quality than the
original GRASP introduced by Prins et al. (2006). We now describe, by means of a
pseudo-code (Algorithm 2), the deterministic algorithm on which is based the pro-
posed GRASP.

First, let us introduce some notation. A route R is represented by a sequence of
nodes (u0, u1, . . . , un, un+1 = u0), with u0 = un+1 ∈ I and u1, . . . , un ∈ J . For
any two routes R, S and for any facility i ∈ I , s(R, S, i) represents the saving pro-
duced when routes R and S are merged to create a new route T which is assigned
to facility i , and such that capacities are respected. Note that if R and S contain
two or more customers, four different mergings are possible, and so the definition
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of s(R, S, i) implicitly assumes that the resulting route T is the one with the lowest
cost. For details on the merging procedure, the reader is referred to Clarke and Wright
(1964) and to Prins et al. (2006). Also, for a Boolean statement p, we define δp to
be equal to 1 if p is true, and 0 otherwise. Finally, F denotes the set of currently
open facilities, γ (·) represent the facilities to which customers are assigned (unas-
signed customers are such that γ ( j) = −1), and l(·) represent the current loads of
facilities.

Algorithm 2 ECWSA
1: F ← ∅, γ ( j)←−1 for all j ∈ J , l(i)← 0 for all i ∈ I .
2: while ∃ j ∈ J such that γ ( j) = −1 do
3: j ′ ← arg min{∑i∈F ci j + 0.1

∑
i /∈F ci j : j ∈ J, γ ( j) = −1}.

4: i ′ ← arg min{2ci j ′ + fi δi /∈F : i ∈ I, l(i)+ d j ′ ≤ bi }.
5: F ← F ∪ {i ′}, γ ( j ′)← i ′, l(i ′)← l(i ′)+ d j ′ .
6: end while
7: R← {(γ ( j), j, γ ( j)) : j ∈ J }.
8: repeat
9: (R′, S′, i ′)← arg max{s(R, S, i) : R, S ∈ R, i ∈ I, and merging respects capacities}.
10: s ← s(R′, S′, i ′).
11: if s > 0 then
12: Merge R′, S′ into a new route T ′ and assign it to facility i ′.
13: Update R by replacing R′ and S′ by the merged route T ′.
14: Update F , γ and l accordingly.
15: end if
16: until s ≤ 0

In our GRASP, we replace the three optimization problems appearing in the pseudo-
code with some randomized variants.

The deterministic statement j ′ ← arg min{∑i∈F ci j +0.1
∑

i /∈F ci j : γ ( j) = −1}
is changed to randomly picking a customer j ′ with among the five customers satisfying
γ ( j) = −1 with minimum value of

∑
i∈F ci j + 0.1

∑
i /∈F ci j . The second term of

this sum is particularly useful at the beginning of the algorithm for picking a customer
close to most facilities.

The statement i ′ ← arg min{2ci j ′ + fiδi /∈F : i ∈ I, l(i)+d j ′ ≤ bi } is decomposed
into two random stages. For the set of closed facilities Fc (if any), we compute the
quantity v(Fc) = (

∑
i /∈F 2ci j ′ + fi )/|Fc| and assign to this quantity a dummy node

iFc , and for each facility i ∈ F we compute separately the quantity v(i) = 2ci j ′ and
assign to it the node i . Now, we put in a list the |F |+1 quantities defined before (only
|F | in case |Fc| = 0) and randomly pick a node i ′ among the three which minimize
it. If i ′ ∈ F , then we assign customer j ′ to this facility. Otherwise, if i ′ = iFc we
randomly pick a facility i ′′ /∈ F among the k = 	|I |/3
 that minimize 2ci ′′ j ′ + fi ′′ .
Facility i ′′ is then opened and customer j ′ is assigned to it.

Finally, the statement (R′, S′, i ′) ← arg max{s(R, S, i) : R, S ∈ R, i ∈
I, and merging respects capacities} is modified to randomly pick a merging among
the five possible mergings with maximum saving.

We call this algorithm the Randomized ECWSA (RECWSA). The RECWSA
is repeated for 300 times, and the solutions are stored in a solution pool P . For
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A GRASP + ILP-based metaheuristic for the capacitated location-routing problem 7

each of the solutions in the pool, we apply LS (detailed in the next section) to
improve its quality. After that, we clean the pool by keeping the 100 best solu-
tions. These solutions will be the input of the SB heuristic which will be described in
Sect. 5.1.

3.2 Local Search

Local search procedures are simple greedy algorithms applied to a feasible solution
to further improve its quality. They are usually based on simple greedy criteria, which
are fast to compute. In our case, we have implemented seven different LS procedures:

FACILITY OPEN Compute the cost of opening a previously closed facility
i and of re-assigning routes to this newly open facility.
We potentially close a facility if it is cheaper to move
all of its routes to the newly open one. This procedure is
performed using a first-improvement criterion.

FACILITY SWAP Swap an open facility with a closed one, and reassign
routes from the first facility to the next. This procedure
is performed using a first improvement criterion.

GIANT TOUR SPLIT Merge all the routes linked to the same facility into one
giant TSP tour (Salhi et al. 1992). Split the tour using
a shortest path algorithm so as to minimize the total
routing cost. This procedure is performed using a first-
improvement criterion.

ROUTE SWAP Swap two routes linked to different facilities. This pro-
cedure is performed using a first-improvement criterion.

2-OPT + 2-EXCHANGE Swap any two customers whether they belong to the same
route or not (Croes 1958; Savelsbergh 1992). This pro-
cedure is performed using a best-improvement criterion.

2-OPT* Two routes are split and re-merged (Potvin and Rousseau
1995). This procedure is performed using a best-improve-
ment criterion.

3-OPT Pick three customers belonging to the same route and
evaluate all possible swaps between them (Lin and
Kernighan 1973). This procedure is performed using a
first-improvement criterion.

Each of these procedures is performed repeatedly until no further improvements are
detected. Also, the order in which each of the procedures is performed is as described
above, and they are cyclically performed until no further improvements are found.
This order is motivated by the following two observations. The first four procedures
are sorted according to the potential impact of a successful move. This impact is in
general larger for the first four methods and that is why they are performed first. Next,
the last three movements involving the swapping of customers are sorted according to
their computational complexity (with the fastest ones first).
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4 A location-reallocation model

In this section we introduce the Location-Reallocation Model (LRM), a new ILP
model that generalizes the CFLP and the reallocation model of Franceschi et al.
(2006), the first by adding the routing decisions to the problem, and the second the
location decisions. This model is the core of the ILP-based heuristics introduced in
this paper, namely the SB and the LIH. We present a mathematical formulation of
the model, some valid inequalities, and the pricing algorithm used in the column
generation.

4.1 Mathematical formulation

Let us consider a feasible solution T of the CLRP. For a given customer subset T ⊆ J
let T (T ) be the truncated solution of the CLRP obtained from T after

i. removing the customers of set T ,
ii. removing the customers that are isolated (because they belonged to a route where

all other customers are in T ) and inserting them into T ,
iii. short-cutting the remaining consecutive nodes in the routes,
iv. deleting the edges linking facilities to customers,
v. and relinking the two remaining endpoints of every route.

As a result, what we obtain is a set of closed subtours, each of which consisting
of at least two customers. F1 illustrates this procedure. On the left side, circular dots
represent customer locations, whereas square nodes represent facility locations. The
nodes surrounded by dotted circles are the nodes in set T . The right side represents
the subtours resulting from the removal of the customers in set T . Let us denote by R
the set of these subtours and for each r ∈ R and i ∈ I let h(i, r) and t (i, r) be the two
consecutive nodes in r which, after linking r to i using these two nodes as endpoints,
produce the route with the least possible cost. To avoid symmetries, we arbitrarily
take h(i, r), t (i, r) satisfying h(i, r) < t (i, r). Customers in T must be reinserted
back into T (T ) and subtours r ∈ R must be assigned to facilities to construct a
(eventually new) feasible solution of the CLRP. For every subtour r we let E(r), V (r)

be the sets of edges and customers in that subtour. We also let c(r) be the routing cost
of the subtour, and q(r) be its load. For every i ∈ I and subtour r ∈ R we define
E(i, r) = E(r) \ {{h(i, r), t (i, r)}}. Let us denote, for a given facility i and subtour r
the set of insertion points associated, I(i, r) = E(i, r)∪ {{i, h(i, r)}, {i, t (i, r)}}. For
each facility i ∈ I we also consider an additional insertion point {i, i} for full routes
that are not extended from any subtour. We let I be the set of all possible insertion
points.

Every insertion point p ∈ I is uniquely assigned to a facility i(p) and to an edge
e(p). Also, every insertion point is either assigned to an unique subtour r ∈ R (in
which case we denote r(p) = r ) or to none (if p = {i, i}, in which case we denote
r(p) = −1). For every insertion point p, we denote by Sp the set of sequences
or partial paths that can be inserted in p, and we denote by S = ∪{Sp : p ∈ I}
the set of all possible sequences. Note that a sequence that results in a violation
of the capacities can be safely removed from S. For every s ∈ Sp we let E(s)
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(a) (b)

Fig. 1 (a) Complete solution. Set T surrounded by dotted circles (b) Incomplete solution after the removal
of nodes in T Example of node removal from a CLRP solution

be the set of edges defining s, q(s) be the load of s (without considering the
two endpoints) and c(s) be the cost associated to that partial route, computed as
follows:

c(s) =
{∑

e∈E(s) ce − ce(p) if p ∈ ∪i,r E(i, r), s ∈ Sp
∑

e∈E(s) ce otherwise.
(1)

Let us define the following notation. Let zi be a binary variable equal to 1 iff facility
i is selected for opening. For every pair {i, j}, i ∈ I, j ∈ T let yi j be a binary variable
equal to 1 iff customer j is served by a single-customer route from facility i . For every
subtour r ∈ R and for every facility i ∈ I let uR

ir be a binary variable equal to 1 iff
subtour r is assigned to facility i . For every facility i ∈ I and customer j ∈ T let uT

i j
be a binary variable equal to 1 iff customer j is served from facility i ∈ I . For every
s ∈ S we let ws be a binary variable equal to 1 iff sequence s (associated to a certain
insertion point) is selected. The LRM is as follows:

∑

r∈R c(r) + min
∑

i∈I
fi zi −

∑

i∈I,r∈R ch(i,r)t (i,r)u
R
ir

+2
∑

i∈I, j∈J
ci j yi j +

∑

s∈S c(s)ws (2)
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subject to

∑

i∈I
uT

i j = 1 j ∈ T (3)
∑

i∈I
uR

ir = 1 r ∈ R (4)

yi j +
∑

p∈I,i(p)=i

∑

s∈Sp, j∈V (s)
ws = uT

i j i ∈ I, j ∈ T (5)
∑

s∈S{i,h(i,r)}
ws = uR

ir i ∈ I, r ∈ R (6)
∑

s∈S{i,h(i,r)}
ws −

∑

s∈S{i,t (i,r)}
ws = 0 i ∈ I, r ∈ R (7)

∑

s∈Sp
ws ≤ uR

ir i ∈ I, r ∈ R, p ∈ I(i, r) (8)
∑

i∈I

∑

p∈I(i,r)

∑

s∈Sp
q(s)ws ≤ Q − q(r) r ∈ R (9)

∑

j∈T
d j u

T
i j +

∑

r∈R q(r)uR
ir ≤ bi zi i ∈ I (10)

z, y, u, w binary. (11)

The objective function (2) contains two parts: a constant term given by the expres-
sion

∑
r∈R c(r), which takes into account the cost of the subtours remaining in the

solution after the removal of the nodes in set T ; and a linear term, combining setup costs
with routing costs. Constraints (3)–(4) are the assignment constraints of customers to
facilities. Constraints (5) are the degree constraints which ensure that customers in T
will be reinserted. Constraints (6)–(7) ensure that partial routes r ∈ R will be linked
to a facility. Constraints (8) ensure that for every insertion point p ∈ I(i, r) at most
one column will be assigned. Moreover, if a route r is not assigned to a certain facility
i , then all of the sequences s ∈ Sp with i(p) = i and r(p) = r are automatically
set to 0. Constraints (9) are the vehicle capacity inequalities. They make sure that
the final routes will not exceed vehicle capacities. Constraints (10) are the facility
capacity inequalities. They make sure that the total demand assigned to every facility
will not exceed its capacity, while at the same time no load will be assigned to closed
facilities.

Note that the minimum sizes of the sequences s may vary. Indeed, a sequence
s participates in the construction of multiple-customer routes, so every time we
have to make sure that only routes containing two or more customers are gener-
ated. Thus, for p ∈ ∪i,r E(i, r), the minimum size of s ∈ Sp (defined as the num-
ber of nodes visited other than those of e(p)) is 1. If p = {i, i} then the mini-
mum size is 2. Finally, if p ∈ ∪i,r {{i, h(i, r)}, {i, t (i, r)}}, then the minimum size
is 0.

4.2 Valid inequalities

The location-reallocation problem described above includes a polynomial number of
constraints and can be solved by means of branch-and-price. However, it is possible
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A GRASP + ILP-based metaheuristic for the capacitated location-routing problem 11

to include all the valid inequalities from the three-index formulation (Contardo et al.
2011) after the inclusion of the following flow and assignment variables.

For every facility i ∈ I and edge e ∈ E , let us define a flow variable xi
e as follows:

xi
e =

⎧
⎪⎨

⎪⎩

uR
ir −

∑
s∈Se

ws if e ∈ E(i, r) for some r ∈ R
1− uR

ir if e = {h(i, r), t (i, r)} for some r ∈ R
∑

p∈I,i(p)=i
∑

s∈Sp,e∈E(s) ws otherwise.

(12)

Also, for every facility i ∈ I and customer j ∈ J let us define the following
assignment variables:

ui j =
{

uR
ir if j ∈ V (r), r ∈ R

uT
i j if j ∈ T .

(13)

Finally, in adition to variables yi j for i ∈ I, j ∈ T , we define yi j = 0 for all
i ∈ I, j /∈ T .

It suffices to use variables (xi
e), (ui j ) and (yi j ) to include the valid inequalities

from the three-index vehicle-flow formulation presented in Contardo et al. (2011).
In particular, we found useful to include the following four families of inequali-
ties: y-capacity cuts (y-CC), y-strengthened effective facility capacity inequalities
(y-SEFCI), y-location-routing generalized large multistar inequalities (y-LRGLM),
and disaggregated co-circuit constraints (DCoCC). For details on the inequalities, we
refer to Belenguer et al. (2011) and Contardo et al. (2011). Moreover, it is possible to
strengthen the y-CC and the y-ESFCI to hybrid forms of the y-strengthened capacity
cuts (y-SCC) and y-set-partitioning strengthened effective facility capacity inequali-
ties (y-SP-SEFCI), which have been developed by Contardo et al. (2013) for solving
the CLRP by branch-and-cut-and-price.

4.3 Column generation

For each column ws , its reduced cost will be computed differently depending on
its insertion point p. Let T (s) ⊆ T be the set of customers in T that are served by
column s. Suppose that no additional inequalities have been added to the problem, and
let α, β, σ, γ, θ be the dual variables associated with constraints (5)–(9). The reduced
cost associated to a column s with an insertion point p ∈ I is given by

c(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c(s)−∑
j∈T (s) α j −

∑
j∈T (s) d j θr(p) − γp if p ∈ ∪i,r E(i, r)

c(s)−∑
j∈T (s) α j − βir(p) − σir(p) if p ∈ ∪i,r {{i, h(i, r)}}

c(s)−∑
j∈T (s) α j + σir(p) if p ∈ ∪i,r {{i, t (i, r)}}

c(s)−∑
j∈T (s) α j if p ∈ ∪i {i, i}.

(14)

If valid inequalities have been added during the solution of the problem, the reduced
costs are modified accordingly using the dual variables associated to these inequalities.
Our pricing algorithms take into account the different expressions in (14) (modified
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12 C. Contardo et al.

by the dual information associated to valid inequalities) but they work along the exact
same principle. The expressions in (14) also imply the following: A different pricing
algorithm must be performed for each possible insertion point p. In our implemen-
tation, the insertion points are sequentially considered without giving any particular
preference to any of them. For each insertion point p, the pricing is performed in two
stages.

First, we use a simple tabu search heuristic starting from a column containing a
single customer. That customer is chosen in such a way that the reduced cost of the
resulting column is as small as possible. We consider four neigborhoods to inspect the
solution space around a given sequence. An ADD neighborhood picks a customer not
in the sequence and inserts it into the sequence. A DROP neighborhood is used to per-
form the opposite move. A SWAP neighborhood picks a customer inside the current
sequence and one outside, and swaps them. Finally, a SWITCH neighborhood takes
two customers inside the sequence and swaps them. We combine neighborhoods ADD,
DROP, SWAP and SWITCH using the customers in set T . The neighborhoods are
sorted and applied in the following order: ADD-DROP-ADD-SWAP-ADD-SWITCH.
Indeed, preliminary experiments showed that the ADD neighborhhod is often the most
useful, and thus it is the one that is performed the most. The movements use a best-
improvement criterion, and a tabu list forbids movements to positions previously vis-
ited during the last three iterations. The algorithm stops whenever a column of negative
reduced cost has been detected or when a maximum number of iterations has been
reached. The maximum number of iterations at the beginning is set to 100. In order to
accelerate the pricing algorithms, after seven rounds of cut generation, we lower this
threshold to 20.

When the tabu search procedure finishes with success (i.e., after having identified
a column with negative reduced cost), starting from that column we apply a greedy
insertion algorithm, similar to the one presented by Franceschi et al. (2006). We
evaluate the insertion of every single customer in a list L initially containing the
customers in T not yet inserted into the column at every possible position. If the
resulting column has negative reduced cost, then it is added to a pool and the same
algorithm is recursively applied to it. This dynamic programming algorithm is applied
until it reaches a depth of 5 from the starting column (the one obtained by the tabu
search procedure).

5 ILP-based metaheuristics

In this section we describe two hybrid metaheuristics based on the solution of the LRM
described earlier. We first describe the SB heuristic, a method based on the existence
of a pool of reasonably good solutions. We then describe the LIH based on the iterative
solution of the LRM and solved by column and cut generation.

5.1 Solution blender

We use a heuristic procedure based on the solution of a particular case of the LRM
to combine routes belonging to different solutions. Given a pool of solutions P , we
apply the following procedure to every solution S ∈ P . Let R(S) be the set of routes
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A GRASP + ILP-based metaheuristic for the capacitated location-routing problem 13

describing solution S. For every route R ∈ R(S) we first consider the subtour pro-
duced by disconnecting R from its facility and then reconnecting its two endpoints.
This tour is then reconnected to every facility i using as endpoints the pair of consec-
utive nodes in the subtour that produces the route with minimum cost. This procedure
creates, for every route R ∈ R(S), |I | routes, each connected to a different facility.
We refer to this procedure as the replication step.

At the end of the replication step, we will potentially have
∑

S∈P |R(S)| × |I |
routes (some repeated routes might be discarded). The LRM is then solved using
T = J and by restricting the set of columns to contain those constructed during the
replication step, without applying any column generation. The optimal solution of this
restricted problem is then likely to combine routes from different solutions. Indeed,
in many cases in which the GRASP procedure was not able to find a near optimal
solution, the blending phase performed substantially better. In our case, the input for
the SB is the solution pool P containing the 100 best solutions found by the GRASP
combined with LS. Every new solution found is also subject to LS. Note that the SB
may fail to find a feasible solution to the problem (even though all solutions in P are
feasible for the SB), in which case the best solution in P is returned.

Our SB heuristic is an implementation of the one proposed by Pirkwieser and
Raidl (2010) for the Periodic LRP (PLRP), which is inspired from a similar procedure
introduced by Rochat and Taillard (1995) and recently used in other heuristic methods
for vehicle routing problems (Subramanian et al. 2013). The main difference of our
procedure with respect to that of Pirkwieser and Raidl (2010) is the use of valid
inequalities to 1) speed-up the solution of the problem, and 2) guide the local branching
(to be described in the next paragraph) towards fixing the right subset of location
variables. Moreover, the SB generalizes the reallocation heuristic used in Prins et al.
(2007) and Pirkwieser and Raidl (2010) based on the solution of a CFLP, and aimed to
decide the optimal assignments to facilities of the routes belonging to a single solution.

At the end of the root node relaxation, we perform a local branching heuristic to
guide the search towards promising directions during the branch-and-bound search.
We fix to 1 the location variables whose values are greater than or equal to 0.9. For
the location variables taking values smaller than or equal to 0.1, we pick the two
variables zi1 , zi2 with the smallest reduced costs. If two or more variables have the
same reduced cost, priority is given to those with the largest values of zi . For these
two location variables we impose the following constraint:

zi1 + zi2 ≤ 1. (15)

The remaining location variables satisfying zi ≤ 0.1 are all fixed to zero.

5.2 Local improvement heuristic

Let T be the solution with minimum cost resulting from the previous heuristic pro-
cedures. Let ρ = 	0.1|J |
 be a parameter. For different values of k > 0, we let
� = kρ be the target size of customer set T to be removed from and reinserted back
in T (T ). The local improvement phase starts with T and k = 1, and successively
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14 C. Contardo et al.

solves the LRM using sets T of target size kρ. Each time a better solution is found,
the algorithm is restarted with the same value of k. When no more improvement can
be detected, k is increased by one unit and the algorithm is restarted. The value of k is
increased at most twice, and each update of this value corresponds to a major iteration
of the LIH. Note that every newly found solution is subject to LS. Also, at the end
of a major iteration the SB heuristic is run using a restricted set of solutions stored
in the pool (the best 50, eventually including the new found solutions). Indeed, we
have found that after the several heuristics applied beforehand and the new solutions
found, the SB takes no significant advantage in considering the initial pool size of
100.

Note that because of the heuristic column generation and the local branching heuris-
tic, the resulting integer problem may be infeasible or the solver may be unable to find
a feasible solution. In this case, the current feasible solution is stored and used in the
following iterations.

In what follows we describe the different parts of this procedure, namely the choice
of the customer set T , the inclusion of an initial pool of columns as well as some local
branching rules.

5.2.1 Choice of set T

The set T of customers to be erased from T is selected by following similar rules
to those explained in Franceschi et al. (2006) and Pirkwieser and Raidl (2010). We
first define the following notion of relatedness between two customers. Let u, v ∈ J
be two customer nodes. Let cmax = max{chj : h, j ∈ J } be the maximum dis-
tance between any two customers. We define the relatedness between u and v as
r(u, v) = 1 − cuv/cmax . If u and v belong to the same route then r(u, v) is mul-
tiplied by 0.75, and if they belong to the same facility then r(u, v) is multiplied by
0.85. The idea is to penalize the choice of customers belonging to the same route or
being served by the same facility, as the LS makes it unlikely that these customers
will switch places. The two rules that we have implemented can be summarized as
follows:

NEIGHBORHOOD rule Given a pivot customer u, we make T = {u} and iter-
atively insert into T the customer u /∈ T such that∑

v∈T r(u, v) is maximal.
RANDOM rule We randomly pick a subset of customers and insert it into

T .

We first apply the NEIGHBORHOOD rule five times. The first time that it is per-
formed, we choose as pivot the customer u that maximizes

∑
v∈J\{u} r(u, v). We

save in a list NT the customers that have participated in T in the previous itera-
tions. For the next iteration, we use as pivot node the customer u /∈ NT such that∑

v �=u,v /∈NT
r(u, v) is maximal. When the NEIGHBORHOOD rule has been used five

times without improving the current solution, we use the RANDOM rule five more
times. If using any of the two rules the current solution is improved, the counters are
reset to zero and the LIH is restarted.
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A GRASP + ILP-based metaheuristic for the capacitated location-routing problem 15

5.2.2 Initial set of columns

We have found it is beneficial to start the column generation algorithm with a small,
but likely useful set of initial columns. For every insertion point p, we let V (p) ⊆ T
be the subset of customers of size min{5, |T |} containing the closest nodes to e(p), in
terms of the sum of the distances to the two endpoints of e(p). Then, we add to the
master problem all the sequences obtained as combinations of the nodes in V (p).

5.2.3 Local Branching

Let I o, I c the subsets of facilities that are open or closed in solution T . From the
beginning of the optimization we let

∑

i∈I o
zi −

∑

i∈I c
zi ≥ |I o| − η.

Depending on the value of �, the parameter η is set either to 2 (if � = ρ) or 0 (if
� ≥ 2ρ). In the first case, we let at most two location variables change their values,
while in the second case the location variables are actually fixed to their current values
in T . When the root node relaxation has been solved with success and no more columns
with negative reduced cost or violated inequalities are detected, we also consider the
same local branching constraint as for the SB (see constraints (15)).

6 Computational experiments

We have run our method on an Intel Xeon E5462, 3.0 Ghz processor with 16GB of
memory. The code was compiled with the Intel C++ compiler v11.0 and executed on
Linux, kernel 2.6. Linear and integer programs were solved with CPLEX 12.5. The
algorithm has been tested on four sets of instances from the literature, containing a
total of 89 instances. The first set of instances (F1) has been developed by Belenguer
et al. (2011) and contains 30 instances with capacitated vehicles and facilities. The
second set of instances (F2) has been introduced by Tuzun and Burke (1999) and
contains 36 instances with capacitated vehicles and uncapacitated facilities. The third
set of instances (F3) has been adapted from other vehicle routing problems by Barreto
(2004) and contains 19 instances with capacitated vehicles, mixing some instances
with capacitated and uncapacitated facilities. The fourth and last set of instances
(F4) has been introduced by Baldacci et al. (2011) and contains four instances with
limited vehicle capacities and uncapacitated facilities. The dimensions of the instances
vary from very small instances with 12 customers and two facilities up to very large
instances with 200 customers and 20 facilities.

For the parameter setting, several runs have been performed on the four sets of
instances. At the end, however, we use the same parameters for all instances and the
average values reported correspond to those obtained on a total of 10 runs for each
instance. The calibrated parameters are reported in Table 1.

In Tables 2, 3, 4 and 5 we report the results obtained by our algorithm on all sets
of instances. In these tables, z∗BK S corresponds to the best known solution as reported
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Table 1 Values for the
calibrated parameters GRASP

# iterations 300

SB

# solns (after GRASP) 100

# solns (after LIH 1, 2, 3) 50

max time (sec.) 300

LIH 1

ρ 	0.1|J |

� ρ

# RANDOM 5

# NEIGHBORHOOD 5

η 2

max time on each it. (sec.) 180

LIH 2

ρ 	0.1|J |

� 2ρ

# RANDOM 5

# NEIGHBORHOOD 5

η 0

max time on each it. (sec.) 180

LIH 3

ρ 	0.1|J |

� 3ρ

# RANDOM 5

# NEIGHBORHOOD 5

η 0

max time on each it. (sec.) 180

CPLEX

Version 12.5

Internal cutting planes No

Probing No

Scaling No

Node search strategy Feasibility

Variable selection strategy Strong branching

by previous authors, z∗avg is the average cost obtained by our solution method, stdev
is the standard deviation (in %) of the cost over the 10 runs, gapavg is the average
relative gap (in %), computed as 100× (z∗avg− z∗BK S)/z∗BK S , Tavg is the average CPU
time, in seconds, over the 10 runs, and z∗best is the best solution found in these 10
runs. This value does not necessarily correspond to the best known solution found by
our method during the parameter setting phase, which is reported later in Table 12.
Finally, gapbest is the relative gap (in %) of the best solution found, computed as
100 × (z∗best − z∗BK S)/z∗BK S . When the best found solution is strictly better than the
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Table 2 Results on instances of set F1

Instance z∗BK S z∗avg stdev gapavg Tavg z∗best gapbest

ppw-20x5-1a 54,793 54,793 0.00 0.00 1.7 54,793 0.00

ppw-20x5-1b 39,104 39,104 0.00 0.00 2.6 39,104 0.00

ppw-20x5-2a 48,908 48,908 0.00 0.00 1.5 48,908 0.00

ppw-20x5-2b 37,542 37,542 0.00 0.00 2.8 37,542 0.00

ppw-50x5-1a 90,111 90,111 0.00 0.00 15.0 90,111 0.00

ppw-50x5-1b 63,242 63,281 0.19 0.06 18.4 63,242 0.00

ppw-50x5-2a 88,298 88,333 0.12 0.04 17.5 88,298 0.00

ppw-50x5-2b 67,308 67,436 0.13 0.19 22.0 67,373 0.10

ppw-50x5-2bis 84,055 84,055 0.00 0.00 21.0 84,055 0.00

ppw-50x5-2bbis 51,822 51,898 0.02 0.15 27.3 51,883 0.12

ppw-50x5-3a 86,203 86,203 0.00 0.00 16.6 86,203 0.00

ppw-50x5-3b 61,830 61,853 0.09 0.04 22.9 61,830 0.00

ppw-100x5-1a 274,814 275,628 0.05 0.30 220.4 275,457 0.23

ppw-100x5-1b 213,615 214,785 0.16 0.55 230.2 214,056 0.21

ppw-100x5-2a 193,671 194,054 0.12 0.20 121.9 193,708 0.02

ppw-100x5-2b 157,095 157,311 0.13 0.14 100.0 157,178 0.05

ppw-100x5-3a 200,079 200,394 0.03 0.16 97.3 200,339 0.13

ppw-100x5-3b 152,441 152,814 0.38 0.24 100.1 152,466 0.02

ppw-100x10-1a 287,983 292,657 3.02 1.62 2, 621.8 287,892 −0.03

ppw-100x10-1b 231,763 236,026 0.55 1.84 1, 067.2 234,080 1.00

ppw-100x10-2a 243,590 243,851 0.11 0.11 236.1 243,695 0.04

ppw-100x10-2b 203,988 204,253 0.15 0.13 258.5 203,988 0.00

ppw-100x10-3a 250,882 253,610 0.17 1.09 723.3 252,927 0.82

ppw-100x10-3b 204,317 205,110 0.18 0.39 584.4 204,664 0.17

ppw-200x10-1a 477,248 477,656 0.26 0.09 3, 960.4 475,327 −0.40

ppw-200x10-1b 378,065 378,656 0.21 0.16 4, 006.0 377,327 −0.20

ppw-200x10-2a 449,571 449,797 0.07 0.05 4, 943.0 449,291 −0.06

ppw-200x10-2b 374,330 374,996 0.08 0.18 3, 486.0 374,575 0.07

ppw-200x10-3a 469,433 471,272 0.19 0.39 4, 075.1 469,870 0.09

ppw-200x10-3b 362,817 363,581 0.12 0.21 7, 887.6 363,103 0.08

Average 0.22 0.28 1, 162.9 0.08

Bold values indicate that a new best solution has been found

best known solution, its value is marked in bold characters. As the results show, our
solutions are 0.28% above the best known solutions on average for the instances of
set F1, 0.45% for the instances of set F2, 0.62% for the instances of set F3 and 0.33%
for the instances of set F4. Moreover, we are able to improve these values in 12 out
of the 89 instances considered in our study. Regarding the CPU times, they lie around
45 min on average, and usually stay below 3 h.

In Tables 6, 7 , 8 and 9 we report the evolution of our algorithm during the different
stages. In these tables, instances are grouped according to their size. The headers
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Table 3 Results on instances of set F2

Instance z∗BK S z∗avg stdev gapavg Tavg z∗best gapbest

P111112 1, 467.7 1, 475.5 0.34 0.53 198.5 1, 469.4 0.12

P111122 1, 449.2 1, 452.0 0.15 0.20 579.8 1, 449.2 0.00

P111212 1, 394.8 1, 405.8 0.38 0.79 219.6 1, 394.9 0.01

P111222 1, 432.3 1, 440.6 0.48 0.58 754.7 1, 432.3 0.00

P112112 1, 167.2 1, 176.2 0.33 0.77 278.0 1, 169.1 0.16

P112122 1, 102.2 1, 103.6 0.11 0.13 633.6 1, 102.4 0.01

P112212 791.7 795.8 0.49 0.53 226.5 791.7 0.01

P112222 728.3 728.5 0.02 0.02 550.4 728.3 0.00

P113112 1, 238.5 1, 239.6 0.04 0.09 285.7 1, 238.5 0.00

P113122 1, 245.3 1, 246.3 0.08 0.08 645.6 1, 245.3 0.00

P113212 902.3 902.8 0.13 0.06 230.6 902.3 0.00

P113222 1, 018.3 1, 018.3 0.00 0.00 748.9 1, 018.3 0.00

P131112 1, 866.8 1, 924.1 0.83 3.07 1, 639.9 1, 899.9 1.78

P131122 1, 823.5 1, 831.0 0.24 0.41 3, 611.7 1, 825.3 0.10

P131212 1, 965.1 1, 969.3 0.16 0.21 1, 274.5 1, 964.3 −0.04

P131222 1, 796.5 1, 800.3 0.24 0.21 3, 099.4 1, 792.8 −0.20

P132112 1, 443.3 1, 450.4 0.27 0.49 871.3 1, 446.8 0.24

P132122 1, 434.6 1, 447.2 0.25 0.88 2, 738.3 1, 443.9 0.65

P132212 1, 204.4 1, 205.9 0.05 0.12 2, 081.6 1, 204.8 0.03

P132222 931.0 931.9 0.05 0.10 3, 734.0 931.3 0.03

P133112 1, 694.2 1, 703.8 0.52 0.57 937.8 1, 695.9 0.10

P133122 1, 392.0 1, 401.5 0.16 0.68 2, 751.2 1, 398.0 0.43

P133212 1, 198.3 1, 199.6 0.06 0.11 1, 009.8 1, 198.6 0.03

P133222 1, 151.8 1, 158.7 0.08 0.60 3, 559.6 1, 157.3 0.48

P121112 2, 251.9 2, 251.3 0.27 −0.03 2, 805.5 2, 243.4 −0.38

P121122 2, 159.9 2, 154.9 0.52 −0.23 5, 679.9 2, 138.4 −0.99

P121212 2, 220.0 2, 226.1 0.37 0.27 3, 004.6 2, 209.3 −0.48

P121222 2, 230.9 2, 241.7 0.34 0.48 6, 143.1 2, 225.1 −0.26

P122112 2, 073.7 2, 093.8 0.55 0.97 3, 462.4 2, 077.8 0.20

P122122 1, 692.2 1, 704.4 0.36 0.72 8, 546.8 1, 694.8 0.16

P122212 1, 453.2 1, 467.8 0.14 1.01 3, 470.9 1, 465.4 0.84

P122222 1, 082.7 1, 086.0 0.15 0.30 5, 292.0 1, 082.9 0.01

P123112 1, 960.3 1, 968.7 0.37 0.43 3, 865.3 1, 954.7 −0.29

P123122 1, 918.9 1, 936.2 0.18 0.90 9, 366.7 1, 931.1 0.63

P123212 1, 762.0 1, 766.2 0.18 0.24 3, 766.3 1, 763.1 0.06

P123222 1, 391.7 1, 392.7 0.03 0.07 5, 156.8 1, 392.0 0.03

Average 0.25 0.45 2, 589.5 0.10

Bold values indicate that a new best solution has been found
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Table 4 Results on instances of set F3

Instance z∗BK S z∗avg stdev gapavg Tavg z∗best gapbest

Perl-12x2 203.98 203.98 0.00 0.00 0.3 203.98 0.00

Gas-21x5a 424.90 424.90 0.00 0.00 1.7 424.90 0.00

Gas-22x5a 585.11 585.11 0.00 0.00 2.9 585.11 0.00

Min-27x5a 3, 062.02 3, 062.02 0.00 0.00 3.5 3, 062.02 0.00

Gas-29x5a 512.10 512.10 0.00 0.00 5.4 512.10 0.00

Gas-32x5a 562.22 562.26 0.00 0.01 6.2 562.22 0.00

Gas-32x5ba 504.33 504.33 0.00 0.00 7.9 504.33 0.00

Gas-36x5a 460.37 460.64 0.18 0.06 8.6 460.37 0.00

Chr-50x5ba 565.62 577.41 0.42 2.08 17.1 574.66 1.60

Chr-50x5bea 565.60 584.87 1.19 3.41 17.7 569.49 0.69

Perl-55x15 1, 112.06 1, 112.40 0.06 0.03 47.4 1, 112.06 0.00

Chr-75x10ba 844.40 847.06 0.33 0.31 87.9 844.58 0.02

Chr-75x10be 848.85 850.56 0.20 0.20 97.8 848.85 0.00

Chr-75x10bmw 802.08 809.55 0.55 0.93 100.0 802.08 0.00

Perl-85x7 1, 622.50 1, 627.31 0.08 0.30 81.8 1, 625.84 0.21

Das-88x8a 355.78 356.10 0.12 0.09 209.6 355.78 0.00

Chr-100x10a 833.43 849.99 0.85 1.99 492.0 840.67 0.87

Min-134x8a 5, 709.00 5, 801.92 0.68 1.63 750.2 5, 719.25 0.18

Das-150x10a 43, 963.60 44, 263.49 0.35 0.68 1, 842.1 43, 952.30 −0.03

Average 0.26 0.62 199.0 0.19

Bold values indicate that a new best solution has been found
a Aggregate results reported in Table 11 are based on these instances

Table 5 Results on instances of set F4

Instance z∗BK S z∗avg stdev gapavg Tavg z∗best gapbest

M-n150x14a 1, 352.93 1, 354.45 0.09 0.11 1, 546.2 1, 353.46 0.04

M-n150x14b 1, 212.46 1, 218.45 0.17 0.49 1, 486.9 1, 213.78 0.11

M-n199x14a 1, 644.35 1, 646.49 0.12 0.13 3, 807.8 1, 644.35 0.00

M-n199x14b 1, 480.43 1, 489.02 0.24 0.58 3, 762.9 1, 483.22 0.19

Average 0.15 0.33 2, 650.9 0.08

GRASP, SB, LIH 1, 2, 3 stand for the different parts of our algorithm, including the
three major iterations of the LIH. The sub-headers gapavg and Tavg stand for the
average relative gap (in %, computed as before) and the average CPU time spent
in seconds. In general, the SB is a very effective method for reducing the gap with
respect to the solutions found during the GRASP. However, the GRASP should not be
underestimated, since the behaviour of the SB depends on the good quality of the routes
found by the GRASP. For the LIH, it is worth observing that for instances of set F1 the
first improvement alone is able to reduce the gap by one half. Subsequent iterations
of the improvement stage are able to reduce the gap by smaller margins. Depending
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Table 6 Algorithm evolution for instances of set F1

Instances GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

ppw-20x5 0.00 0.4 0.00 0.6 0.00 0.8 0.00 1.2 0.00 2.1

ppw-50x5 0.64 7.5 0.12 8.5 0.10 10.6 0.07 14.1 0.06 20.1

ppw-100x5 1.49 64.0 0.41 86.7 0.35 96.8 0.30 111.2 0.26 145.0

ppw-100x10 3.16 76.0 2.59 132.2 1.48 290.8 1.03 517.7 0.86 915.2

ppw-200x10 1.46 968.2 0.71 1, 629.9 0.39 2, 315.1 0.25 3, 111.6 0.18 4, 726.3

Average 1.39 223.7 0.77 372.1 0.47 543.5 0.33 752.0 0.28 1, 162.9

Table 7 Algorithm evolution for instances of set F2

Instances GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

100x10 2.21 115.5 0.67 123.1 0.55 141.7 0.48 174.0 0.46 239.8

100x20 1.76 179.9 0.37 201.5 0.28 267.5 0.24 392.1 0.17 652.2

150x10 3.10 653.2 1.17 715.0 1.00 780.7 0.83 913.1 0.76 1, 302.5

150x20 2.97 916.1 0.71 1, 038.0 0.60 1, 304.5 0.52 2, 031.8 0.48 3, 249.1

200x10 3.28 1, 856.2 1.17 2, 232.1 0.80 2, 441.4 0.65 2, 755.5 0.48 3, 395.8

200x20 3.48 2, 706.2 0.80 3, 050.6 0.61 3, 484.5 0.47 4, 459.6 0.37 6, 697.6

Average 2.80 1, 071.2 0.82 1, 226.7 0.64 1, 403.4 0.53 1, 787.7 0.45 2, 589.5

Table 8 Algorithm evolution for instances of set F3

Instances GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

≤50 custs 1.29 2.5 0.79 2.7 0.70 3.3 0.60 4.8 0.56 7.1

>50 custs 2.87 135.3 1.24 142.7 0.97 235.2 0.82 310.9 0.68 412.1

Average 2.04 65.4 1.00 69.0 0.83 113.2 0.71 149.8 0.62 199.0

Table 9 Algorithm evolution for instances of set F4

Instances GRASP SB LIH 1 LIH 2 LIH 3

gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg gapavg Tavg

150 custs 6.11 1, 058.5 0.47 1, 160.7 0.39 1, 220.1 0.34 1, 319.5 0.30 1, 516.6

199 custs 6.30 2, 723.7 0.56 3, 057.6 0.44 3, 192.8 0.38 3, 415.2 0.36 3, 785.3

Average 6.21 1, 891.1 0.51 2, 109.2 0.41 2, 206.5 0.36 2, 367.4 0.33 2, 650.9

on the needs of the decision maker, the improvement phase can be extended to more
iterations or reduced to fewer, compensating the time saved or added with the quality
of the solutions obtained.
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Table 10 Sensitivity of method
GRASP+SB to the number of
iterations/solutions considered

SB SOLNS GRASP ITS

150 300 450

gap T gap T gap T

50 0.98 242.1 0.79 356.4 0.79 470.44

100 1.00 256.0 0.77 372.1 0.72 474.84

150 0.99 296.9 0.79 408.1 0.71 517.52

Table 11 Comparison against other heuristics

Method F1 F2 Fa
3

gap T gap T gap T

GRASP+PRb 3.60 96.5 3.42 159.56 1.49 21.15

MA|PMb 1.38 76.7 1.78 203.13 2.01 37.8

LRGTSb 0.74 17.5 1.76 21.24 1.64 18.21

GRASP+ELSc 1.07 65.2 1.22 606.6 0.02 187.7

VNS+ILPd 0.86 6.7 − − − −
SALRPb 0.41 422.4 1.41 826.4 0.27 140.46

ALNS 0.70 451.0 0.81 830.0 0.15 174.75

GRASP 1.39 223.7 2.80 1, 071.2 1.98 86.2

GRASP+SB 0.77 372.1 0.82 1, 226.7 1.13 89.9

GRASP+ILP 0.28 1, 162.9 0.45 2, 589.5 0.65 279.0
aRestricted to instances marked with Superscript ’a’ in Table 4
bResults reported on a single run
cBest results after 5 runs
dInstances in F2 and F3 not tested

Table 12 New best known solutions

Instance z∗BK S z∗N EW Instance z∗BK S z∗N EW

ppw-100x10-1a 287,983 287,695 P131122 1, 823.5 1, 823.2

ppw-100x10-1b 231,763 230,989 P131212 1, 965.1 1, 964.3

ppw-200x10-1a 477,248 475,294 P131222 1, 796.5 1, 792.8

ppw-200x10-1b 378,065 377,043 P133212 1, 198.3 1, 198.2

ppw-200x10-2a 449,571 449,115 P121112 2, 251.9 2, 243.4

ppw-200x10-2b 374,330 374,280 P121122 2, 159.9 2, 138.4

ppw-200x10-3b 362,817 362,653 P121212 2, 220.0 2, 209.3

Das-150x10 43,963.6 43,952.3 P121222 2, 230.9 2, 222.9

P123112 1, 960.3 1, 954.7

Bold values indicate that a new best solution has been found

In Table 10 we report the performance of the sub-method GRASP+SB (i.e., without
including LIH) for different settings of GRASP and SB. The objective of this exper-
iment is to assess the sensitivity of GRASP+SB to the addition or limitation of time
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and memory resources. In addition to the calibrated GRASP performed during 300
iterations, we also run it for 150 and 450 iterations. Also, method SB is not only run
by taking the 100 best solutions of the GRASP, but also considering 50 and 150 solu-
tions. We have run method GRASP+SB for each possible setting (nine in total), on the
instances of family F1. Each instance is solved 10 times, and the average gaps (in %)
and CPU times (in seconds) are computed and reported. As one can see, the method is
sensitive to the number of iterations performed by GRASP and the number of solutions
considered in method SB. The simplest setting (GRASP for 150 iterations and SB using
50 solutions) provides the worst gaps but is also the fastest, while the more complex
setting (GRASP for 450 iterations and SB using 150 solutions) seems to take advantage
of the additional time and memory resources to obtain better solutions on average.

In Table 11 we compare our algorithm against several of the most recent heuristics
developed for the CLRP. The algorithms considered are: GRASP+PR (Prins et al.
2006), MA|PM (Prodhon and Prins 2008), LRGTS (Prins et al. 2007), GRASP+ELS
(Duhamel et al. 2010), VNS+ILP (Pirkwieser and Raidl 2010), SALRP (Yu et al. 2010)
and ALNS (Hemmelmayr et al. 2012). Note that average results are not available for
all these methods, some of them reporting results on single runs or the best results
after several runs. Therefore, direct comparisons may be in many cases biased. In
the last three rows of this table we report average results obtained by our method.
Row GRASP corresponds to our GRASP, GRASP+SB to the addition of the SB and
GRASP+ILP to the whole method, including the three major iterations of the LIH.
The set of instances F4 has not been considered by any of the previous heuristics
and is therefore not included in this table. As shown in the table, our algorithm is
able to obtain the tightest average gaps for sets F1 and F2, and competitive average
gaps on instances of set F3, getting better average results than GRASP+PR, MA|PM
and LRGTS but outperformed by SALRP and ALNS. On the other hand, algorithms
LRGTS and VNS+ILP take much less CPU time, but they seem to be less robust than
our method in terms of solution quality. Additionally, our GRASP is able to obtain
better solutions than that developed by Prins et al. (2006) for instances of families
F1 and F2. Finally, note that by only applying our GRASP algorithm and the SB,
we already obtain very competitive gaps, usually better than the previous approaches
except for SALRP on instances of set F1 and for SALRP and ALNS on instances of set
F3. In this discussion we have omitted comparisons against GRASP+ELS (Duhamel
et al. 2010) since they only report best results after 5 runs, therefore any comparison
to their method would be biased.

Finally, in Table 12 we report (in bold characters) the new best known feasible
solutions found by our algorithm. Note that these solutions were not necessarily found
during the 10 runs of our method, but rather during the calibration of several para-
meters. In total, our algorithm was able to improve the solutions on 17 out of the 89
instances considered in this study.

7 Concluding remarks

In this paper we have introduced a new heuristic method for the CLRP based on a
GRASP followed by the iterative solution of a new ILP model, the location-reallocation
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model (LRM). The GRASP introduced in this paper provides better solutions than the
previous approach of Prins et al. (2006) for most of the instances considered in this
study. We have introduced the location-reallocation model that generalizes the CFLP
and the RM of Franceschi et al. (2006) by simultaneously determining the locations
of facilities as well as the reallocation of customers and routes to those facilities. We
use a IP-based method, the solution blender (SB), that takes as input a set of solutions
for the CLRP and solves the LRM to find near optimal solutions. Indeed, by only
applying our GRASP followed by the SB we obtain gaps that are competitive with the
methods found in the literature. We complement this by applying a local improvement
heuristic (LIH) based on the iterative solution of the LRM solved by column and
cut generation. This LIH was found to be very effective in tightening the optimality
gap. Finally, we were able to improve the best known feasible solutions on 17 out of
the 89 instances considered in this study. As an avenue of future research, we believe
that this heuristic can be adapted to solve some generalizations of the CLRP, such as
the two-echelon CLRP (2E-CLRP) or the two-echelon CVRP (2E-CVRP), important
problems arising in the operation of city-logistics systems.

Acknowledgments We thank the three anonymous referees and the Associate Editor for their helpful
comments and suggestions that contributed to improve the quality of the article. We also thank the Canadian
Natural Sciences and Engineering Research Council (NSERC) for its financial support.

Appendix

Detailed results for different seetings of GRASP+SB

In this appendix we provide a detailed comparison of the performance of method
GRASP+SB (i.e., without considering the LIH) for different settings of GRASP and
SB on the instances of set F1. Table 10 is based on the average values reported in
Table 13. Each gap and CPU time reported corresponds to the average on 10 runs of
method GRASP+SB.

New best solutions found

In this appendix we provide the best solutions found by our algorithm (including the
calibration phase) as reported in Table 12. In each table, the first lines report the loads
(q) and fixed costs (cost) of the open facilities ( f ). The following lines report the
loads (q), costs (cost), facilities ( f ) and customers (customers) associated with each
route. The customers are listed in their order of visit (See Tables 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, and 30).
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Table 14 New solution for
instance ppw-100x10-1a with
cost 287695

q cost f customers

490 47,865 104

560 47,995 105

560 59,082 110

51 2,870 104 44 54 14

70 6,057 104 35 23 19 48

70 7,314 104 82 72 51 12

70 4,431 104 69 8 1 86 73
26 1,524 104 77 31

70 6,093 104 41 61 25 40

64 9,079 104 93 27 99 53 9

69 4,137 104 84 2 4 63

67 6,933 105 42 62 89 49

57 3,936 105 52 38 47

70 6,654 105 79 34 59 65 83

68 4,687 105 13 7 17 71

69 5,463 105 67 16 15 80

70 5,081 105 88 87 5 50

69 4,626 105 66 60 10 3

29 2,272 105 39 30

61 6,275 105 45 91 46 95

34 1,765 110 11 76

70 9,947 110 37 26 64 22

64 4,166 110 75 68 58 81

69 3,606 110 29 70 6 98

64 3,707 110 43 33 28 94

67 4,939 110 55 85 74 18

69 7,718 110 90 92 96 24 100

69 6,329 110 56 20 36 78 97

54 3,144 110 32 21 57

Table 15 New solution for
instance ppw-100x10-1b with
cost 230989

q cost f customers

490 47,865 104

560 47,995 105

560 59,082 110

149 9,457 104 41 40 25 93 27 26 53 99 9 37

148 5,492 104 39 4 80 3 10 60 66 2 84

44 1,958 104 63 31 77

149 7,971 104 73 23 19 12 51 72 82 87 88

111 5,171 105 47 52 5 50 38 13

150 7,571 105 67 16 49 89 62 42 7 17 71

150 7,620 105 79 15 45 91 95 46 34 59 65 83

149 4,820 105 30 44 14 69 8 48 1 35 54

139 5,791 110 32 57 21 55 85 18 33 43

140 8,915 110 74 100 24 61 64 22 96 92 90

131 4,102 110 11 94 29 70 58 68 75 28

150 7,179 110 76 98 97 78 86 36 20 81 6 56
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Table 16 New solution for
instance ppw-200x10-1a with
cost 475294

q cost f customers

1,190 106,139 201

758 71,504 202

1,150 76,197 206

70 3,899 201 177 196 60 188 32

67 4,962 201 75 180 199 77 28

65 3,461 201 69 191 70 129

62 2,050 201 62 33 186 156

65 3,721 201 74 120 11 6

66 7,543 201 38 128 72 110

70 5,318 201 89 41 125 66

68 7,111 201 113 58 167 82

62 5,544 201 170 136 146 168

68 3,849 201 131 18 157 155

70 6,683 201 107 34 142 21 44

69 5,046 201 87 45 31 108

66 5,807 201 178 162 79 93

70 3,569 201 134 49 116 153 175

65 4,365 201 139 182 126 200

65 2,868 201 164 163 92 64

69 4,249 201 187 81 185 179 20

53 1,683 201 27 112 94

68 5,388 202 176 101 96 85 172

69 5,473 202 67 193 86 43 183

67 2,713 202 10 98 14 138

70 5,925 202 194 149 147 118 55

70 3,470 202 19 59 154 56

70 5,468 202 117 122 95 68

68 3,868 202 88 84 2 189

69 5,605 202 97 152 91 144

68 5,082 202 133 57 130 16 46

70 3,783 202 151 123 23 160 158

69 3,388 202 26 8 150 22 124

67 3,234 206 51 166 61 198

70 4,041 206 114 9 171 143

65 5,620 206 145 161 76 127

70 5,601 206 173 90 29 65

69 6,197 206 174 37 109 78 50

69 3,698 206 115 181 119 63 165

66 7,011 206 73 25 141 4

70 5,522 206 30 35 36 148

68 6,329 206 190 17 197 121
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Table 16 continued
q cost f customers

68 9,116 206 80 3 53 54 5

68 3,455 206 47 105 40 106 100

63 3,207 206 104 103 71 48

70 5,499 206 184 13 99 137 140

70 7,391 206 135 1 192 39

59 2,534 206 42 169 7 12

69 2,450 206 83 102 111 52

69 8,658 206 132 195 159 15 24

Table 17 New solution for
instance ppw-200x10-1b with
cost 377043

q cost f customers

1,183 106,139 201

872 71,504 202

1,043 76,197 206

147 3,269 201 27 62 164 64 92 163 33 186 156

149 4,880 201 129 108 31 11 120 6 74 155 94

144 4,764 201 134 157 131 49 116 153 32 175 177 112

147 5,731 201 139 196 182 200 126 81 187 185 179 20

150 7,925 201 44 38 128 72 110 167 58 15 34

149 8,920 201 113 21 142 82 53 54 5 192 159 66

147 6,187 201 89 170 107 41 125 136 146 168 18

150 5,369 201 45 75 180 199 77 87 28 70 191 69

147 4,747 202 26 138 124 84 88 16 130 151 123 160

139 6,468 202 56 154 194 149 178 172 85 96 176

146 6,099 202 19 59 101 188 60 43 183 86 193 67

142 4,009 202 46 2 189 22 150 8 14 98 10

149 6,322 202 144 91 152 65 29 97 90 133 57

149 6,381 202 158 23 68 117 95 122 76 147 118 55

149 4,054 206 51 12 169 105 47 40 173 106 114 100

146 6,259 206 71 140 50 78 4 190 137 99 13 184

150 7,274 206 42 145 161 127 37 162 93 79 109 174

150 4,332 206 111 198 115 119 148 61 102 83 166

149 7,724 206 141 25 73 195 132 80 17 197 121 63

150 7,801 206 36 35 39 3 1 135 24 30 181

149 4,688 206 52 165 48 103 104 143 171 9 7

123



A GRASP + ILP-based metaheuristic for the capacitated location-routing problem 29

Table 18 New solution for
instance ppw-200x10-2a with
cost 449115

q cost f customers

895 113,643 201

1,229 74,099 204

977 92,628 208

62 1,717 201 9 8 15 66

70 3,396 201 44 59 94 35

60 3,381 201 39 1 53 64

69 3,000 201 69 18 98 32 46

63 3,517 201 54 23 95 56

70 2,825 201 77 17 82 49 42

66 2,547 201 75 51 33 57

67 3,630 201 37 88 84 14 65

68 2,967 201 60 16 28 13

68 3,818 201 20 45 93 85

59 4,901 201 43 90 38 78

66 4,641 201 97 48 58 62 52

48 1,744 201 7 30 80

59 2,814 201 26 100 11 61

70 4,360 204 29 83 27 40

68 6,304 204 164 161 178 173

68 3,350 204 135 112 139 120

70 5,320 204 74 4 12 81

67 2,808 204 99 31 6 63 70

69 4,614 204 124 151 160 172 185

69 3,282 204 71 73 195 101

68 2,323 204 133 186 141 180

65 4,375 204 19 55 24 87

68 4,112 204 34 5 41 79

66 3,608 204 47 91 36 25

69 5,464 204 22 76 92 72 10

68 3,353 204 123 111 179 107

68 2,627 204 137 128 121 181

68 3,155 204 50 67 96 3

70 4,005 204 89 2 68 21 86

70 3,668 204 113 122 115 188 134

68 3,863 204 193 200 131 157

49 1,484 208 146 126 149

60 3,226 208 175 156 118 177

70 2,827 208 130 192 163 184 155

61 3,138 208 136 154 104 169

68 5,246 208 191 109 197 125 183

62 4,097 208 168 171 110 189
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Table 18 continued
q cost f customers

70 4,501 208 103 196 102 127

68 2,547 208 166 162 182 129

66 2,499 208 165 159 176 145

69 5,050 208 140 142 116 143 105

64 4,687 208 148 117 150 174 132

70 3,506 208 138 190 144 106 158

66 3,937 208 152 153 108 198

65 2,890 208 147 194 167 170

69 3,621 208 119 114 199 187

Table 19 New solution for
instance ppw-200x10-2b with
cost 374280

q cost f customers

885 113,643 201

1,245 74,099 204

971 92,628 208

147 3,781 201 15 8 66 61 26 100 11 69 18 98

146 4,060 201 44 32 59 94 35 64 53 1 39

146 5,903 201 93 85 43 90 38 78 97 48 58 62

149 3,653 201 60 13 45 20 28 16 52 7 30

150 3,281 201 80 75 51 57 33 21 68 2 89 42

147 3,757 201 49 82 56 95 23 54 46 17 77 9

150 4,010 204 180 157 131 200 135 112 139 189 120

149 6,715 204 124 151 160 173 178 161 164 110 172 185

143 4,009 204 128 122 107 179 134 115 188 111 123

150 3,633 204 71 3 96 25 36 91 47 63 70

111 2,459 204 141 186 133 113 181 121 137

150 4,525 204 50 67 79 41 5 34 73 195 101

101 3,684 204 99 6 31 87 19 74 86

147 5,596 204 29 12 4 84 14 65 88 37 55 24

144 5,510 204 83 27 40 22 76 92 81 72 10

118 2,899 208 165 159 176 163 184 192 155 145

148 4,874 208 154 148 150 117 127 102 140 103 171 168

145 2,940 208 149 126 138 182 129 177 162 166 130

149 4,720 208 198 108 153 199 187 114 132 174 119

119 4,500 208 158 156 118 193 175 106 144 190

143 5,505 208 196 105 142 143 116 197 125 109 183 191

149 3,896 208 169 104 136 152 170 167 194 147 146
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Table 20 New solution for
instance ppw-200x10-3b with
cost 362653

q cost f customers

1,114 82,534 204

977 79,185 206

986 72,941 210

150 7,157 204 1 59 22 36 41 4 51 46 21

148 6,932 204 115 97 178 131 188 182 195 169 81

141 5,530 204 85 74 148 143 157 167 173 199

150 9,071 204 155 193 192 137 154 160 152 135 190 186

148 9,366 204 187 170 168 174 200 144 172 191 158 194

150 11,043 204 197 150 136 156 139 145 159 185
142 133 151

146 6,219 204 198 184 166 163 141 176 161 181 165 132

81 2,125 204 84 108 95 78 113

93 3,661 206 47 13 23 49 48 63

150 5,369 206 31 38 53 57 42 37 65 10 34 62

147 6,198 206 7 61 35 16 25 8 14 44 29 27

150 6,991 206 2 20 58 30 52 24 60 45 56 33

143 6,292 206 3 177 175 180 153 171 149 140 179

146 6,132 206 147 146 189 196 164 138 162 183 134

148 4,298 206 19 18 15 26 17 12 64 11 55 9

146 5,096 210 123 79 82 105 126 103 101 88 70

145 3,931 210 91 129 125 75 83 100 66 93 114 67

149 5,366 210 69 111 76 68 92 89 77 110 121 94

145 3,729 210 71 80 124 116 128 127 109 112 130

149 4,689 210 98 86 99 119 104 87 102 117 107 73

146 6,274 210 6 28 32 5 39 54 43 50 40

106 2,524 210 90 118 96 120 106 72 122

Table 21 New solution for instance Das-150x10 with cost 43952.3

q cost f customers

28,366,790 5,000 151

27,894,615 5,000 156

21,706,980 5,000 159

7,393,809 0.00 151 1

5,036,110 861.556 151 70 84 111 47 48 76 54 43 87 93 137 15 75 114

7,978,160 4,051.73 151 73 149 147 56 28 96 13 148 86 132 69 136 3 119 62 120 145

7,958,711 6,512.53 151 124 51 79 98 103 77 91 36 117 61 150 24 71 37 100 60 134 78
22 29 143 80 125

6,969,974 1,132.42 156 6 109 2 49 95 50 99 138 102

7,960,791 2,089.64 156 68 128 59 106 88 104 131 5 115 17 46 31 44 23 107 140 130

7,037,516 1,048.44 156 40 139 26 144 89 72 16 35 39 116 30 81 55 32 90 38

5,926,334 4,828.51 156 122 141 12 101 112 34 135 10 41 20 133 118 108
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Table 21 continued

q cost f customers

7,354,925 2,307.61 159 9 18 45 110 53 126 8 105 63 19 65 27

6,778,743 2,267.29 159 142 94 123 83 121 113 7 11 97 42 33 74 82 85 129 66

7,573,312 3,852.61 159 57 14 67 127 52 21 146 92 64 25 4 58

Table 22 New solution for
instance P131122 with cost
1823.2

q cost f customers

533 100 155

440 100 160

571 100 163

696 100 169

115 86.9 155 46 93 39 146 143 114 142 64

144 101.3 155 44 123 15 2 128 137 107 140 14 49

127 64.0 155 76 136 7 105 61 147 86 52 89

147 106.2 155 55 22 82 28 100 65 29 37 150 6 63

144 100.0 160 9 59 72 70 115 85 134 101 34

148 63.5 160 5 127 148 97 131 62 77 79 35 42

148 74.0 160 138 75 81 56 57 20 24 4 31 45

145 60.1 163 88 111 120 132 87 90 30 60 47

145 87.6 163 67 78 18 119 102 129 139 16 48

139 115.8 163 54 36 125 98 74 10 124 25 149

142 97.1 163 73 40 145 118 96 110 19 23 108

148 96.9 169 11 126 53 8 43 133 69 112 144 33

125 67.3 169 27 91 104 130 32 38 12 122 99

136 101.0 169 21 66 50 121 71 141 135 58 117

139 90.8 169 103 113 83 94 80 17 13 106 26

148 110.7 169 51 84 41 3 92 95 116 109 68 1

Table 23 New solution for
instance P131212 with cost
1964.3

q cost f customers

842 100 156

677 100 158

734 100 160

149 85.5 156 116 17 18 19 1 88 143 58 83 99

148 79.9 156 48 106 107 129 123 43 59 66 78 54

141 141.5 156 132 50 141 114 110 96 144 51 124

150 138.3 156 14 7 103 5 16 60 27 37 146 149

141 118.4 156 121 40 104 113 57 137 81 101 91

113 85.9 156 3 79 34 31 118 148 74

92 74.3 158 11 145 92 24 53 13
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Table 23 continued
q cost f customers

149 85.4 158 2 126 30 6 63 102 12 135 25

147 167.5 158 112 8 45 125 95 46 147 67 84 134 133

145 74.8 158 128 29 139 94 127 86 21 111 68 117

144 117.3 158 15 23 4 119 77 41 38 9 108

150 128.2 160 69 142 76 70 75 44 122 36 33

149 96.5 160 80 49 64 22 85 32 73 47 98 150

141 92.1 160 90 109 89 39 138 42 65 97 105 52

148 96.8 160 71 140 131 93 87 100 82 61 20 130

146 81.8 160 62 55 56 26 120 115 136 28 35 10 72

Table 24 New solution for
instance P131222 with cost
1792.8

q cost f customers

842 100 154

721 100 165

644 100 168

116 57.2 154 43 108 76 141 118 37 14 55

141 101.2 154 87 97 127 59 42 88 117 109 21 36

150 129.7 154 101 15 144 9 20 81 57 26 39 96

141 79.5 154 92 91 80 130 8 27 142 41 61 24

148 104.6 154 12 107 119 116 123 52 150 128 85 82

146 94.1 154 100 106 126 3 110 4 90 131 99

142 72.3 165 147 33 140 79 48 70 16 122

145 113.8 165 77 105 145 86 60 46 56 98 62 34 94

148 103.7 165 49 45 137 143 63 66 6 40 64 111 67

148 75.5 165 53 58 115 133 74 129 135 146 22 112

138 78.9 165 32 1 139 104 124 13 35 132 65 5

150 117.1 168 134 25 103 23 89 19 114 136 50 68

136 73.9 168 121 11 95 17 138 29 10 120 93 51

76 75.1 168 102 125 78 31 30

141 109.7 168 38 75 69 2 83 148 113 18 54

141 106.3 168 71 73 47 44 149 7 84 72 28

Table 25 New solution for
instance P133212 with cost
1198.2

q cost f customers

1,079 100 151

468 100 155

730 100 159

135 35.3 151 68 72 64 89 63 84 73 65 80

149 71.8 151 50 60 33 37 47 59 46 52 55 34 45

149 89.0 151 97 106 104 105 100 108 110 96 119

144 93.1 151 109 93 94 98 111 120 101 103 118
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Table 25 continued
q cost f customers

150 86.1 151 95 107 114 116 115 102 99 112 117 113 62

138 35.1 151 70 69 66 75 79 76 88 67

68 23.0 151 82 91 90 78 61

146 29.7 151 71 77 86 87 81 74 83 92 85

145 40.4 155 142 133 141 146 122 145 138 135 149

150 50.3 155 143 123 124 137 121 144 132 150 129 126

144 42.7 155 130 136 148 140 147 128 134 131 127

29 19.8 155 139 125

144 59.7 159 8 32 7 23 6 29 12 3 25 11

150 61.2 159 56 49 57 39 40 48 58 27 13

142 68.3 159 42 43 35 54 51 41 44 53 36 38

144 45.9 159 1 5 20 17 28 16 18 9 19 30

150 46.8 159 4 10 24 14 15 2 31 26 21 22

Table 26 New solution for
instance P121112 with cost
2243.4

q cost f customers

1,147 100 206

1,134 100 209

708 100 210

113 62.5 206 4 5 116 80 52 85 122 181

149 88.0 206 26 157 127 99 140 87 92 49 8 198

141 109.7 206 45 130 94 51 126 170 193 11 19 199

148 128.9 206 197 183 154 150 31 137 175 67 21 113

149 132.6 206 182 91 48 37 192 28 160 186 57 102 40

148 101.6 206 108 56 168 16 78 132 43 149 114 29

150 124.5 206 55 100 98 64 82 185 58 144 65 83

149 90.9 206 128 138 161 77 155 105 194 15 189 190

138 63.3 209 133 135 163 191 7 148 169 158

143 75.8 209 47 38 17 166 146 119 34 167 39 134

148 93.9 209 12 184 33 97 120 129 109 71 53 6

126 65.6 209 195 142 69 84 187 177 152 143

146 86.2 209 2 9 121 79 139 46 96 66 200

140 82.9 209 68 103 86 75 153 59 136 174 162

150 125.3 209 104 124 61 164 110 196 90 112 115 54

143 103.5 209 18 10 27 62 24 63 159 60 101 188

133 104.3 210 32 145 88 22 70 50 30 111 171

150 85.5 210 172 81 44 156 125 123 165 151 131 106

139 60.5 210 74 118 73 42 107 180 14 93 117

136 85.9 210 36 95 13 178 41 176 141 1 76

150 72.1 210 147 179 23 35 3 173 25 72 89 20
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Table 27 New solution for
instance P121122 with cost
2138.4

q cost f customers

880 100 204

863 100 205

402 100 210

884 100 214

147 89.4 204 54 129 80 140 127 21 49 73 195 27 43

143 75.6 204 146 6 187 174 67 191 143 131 186 12

149 114.8 204 155 95 94 193 117 53 35 2 8 144 110

149 90.1 204 29 170 125 139 159 132 50 28 197 75

148 79.6 204 135 74 116 162 134 44 163 147 24

144 69.4 204 23 112 196 138 56 161 104 160 114

137 71.9 205 177 83 113 16 32 41 180 181 90

149 104.4 205 13 7 98 190 157 128 158 76 37 89

147 98.1 205 22 123 175 179 79 20 185 164 39

146 73.8 205 36 97 34 63 122 183 88 199 65

145 88.9 205 99 109 64 4 182 31 47 118 62

139 79.8 205 102 9 103 169 46 91 105 142 176

146 88.2 210 151 171 86 48 77 172 200 192 42 198

148 75.3 210 130 71 59 137 5 108 51 119 173 96

108 62.7 210 120 3 141 66 165 93 152

147 76.4 214 126 166 188 70 194 87 58 60 15 149

148 76.5 214 84 178 124 168 69 111 81 184 19 1

146 78.6 214 14 189 107 133 121 156 167 72 33 18

147 83.5 214 26 55 148 40 11 150 38 154 145 68

147 110.5 214 85 136 25 10 57 17 106 115 52

149 51.0 214 78 153 100 30 61 45 92 82 101

Table 28 New solution for
instance P121212 with cost
2209.3

q cost f customers

995 100 204

1,415 100 206

551 100 209

144 88.0 204 45 92 17 160 47 147 126 136 87 159

125 59.9 204 95 117 9 185 99 194 161 198

147 139.8 204 30 143 80 119 49 184 63 171 1 39

147 88.1 204 23 22 67 200 90 178 120 57 64 191

141 100.6 204 12 182 24 54 174 28 170 141 122 199

143 88.9 204 105 111 128 175 18 177 13 96 44 173

148 84.8 204 34 72 62 7 61 156 100 157 145 74

146 59.2 206 75 163 77 29 35 150 46 195 19 102 88

148 98.8 206 60 110 48 139 187 176 116 121 53 56 158

148 70.3 206 98 155 25 167 59 68 135 26 33

149 83.1 206 188 41 149 93 91 11 109 113 154 21

123



36 C. Contardo et al.

Table 28 continued
q cost f customers

91 44.9 206 69 15 144 114 151 40

146 93.4 206 169 2 82 168 186 123 162 5 43 32

146 89.2 206 73 134 165 10 38 37 115 192 103

145 86.9 206 142 148 58 124 16 36 132 180

146 161.0 206 140 125 14 4 153 70 71 127 106 107

150 113.7 206 65 108 129 183 94 89 189 193 172 51

132 57.6 209 3 196 66 197 181 146 6 84 76

124 66.1 209 42 52 133 138 85 97 55 20 104

145 109.0 209 164 131 78 27 118 86 137 190 130

150 126.0 209 81 79 152 166 179 83 101 50 31 8 112

Table 29 New solution for
instance P121222 with cost
2222.9

q cost f customers

724 100 201

969 100 203

588 100 205

706 100 208

149 96.7 201 59 117 4 95 197 36 142 180 104

142 87.0 201 56 16 13 92 45 85 133 113

146 111.4 201 25 177 86 49 128 87 70 136 83

145 83.8 201 123 176 81 46 125 80 73 12 174

142 47.1 201 44 58 114 38 102 189 17 43 22

111 53.9 203 47 137 61 124 172 39 3 98

148 106.0 203 50 132 191 165 33 159 26 187 127

135 86.8 203 194 20 110 82 121 57 9 195 34 119

145 63.6 203 152 51 144 84 27 93 116 100 41

147 86.0 203 131 198 175 66 65 164 68 29 67 23

147 107.2 203 74 192 182 148 101 155 42 53 96 72 167

136 98.7 203 10 186 97 145 107 108 138 163 139 11

142 96.3 205 5 153 140 126 14 120 106 89 147 171

146 70.4 205 122 79 94 77 2 178 30 150 6 146

150 102.6 205 154 156 199 143 88 60 105 103 115 169

150 74.8 205 18 19 78 21 173 135 99 32 151 185

143 71.2 208 200 52 196 168 71 7 157 193 109

149 99.9 208 48 111 130 161 8 55 40 28 184 37 112

137 89.8 208 15 24 129 62 162 188 118 90 31 54 1

141 117.1 208 166 160 35 75 149 63 190 69 170

136 72.5 208 76 134 183 181 158 64 141 91 179
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Table 30 New solution for
instance P123112 with cost
1954.7

q cost f customers

1,184 100 202

529 100 207

577 100 209

736 100 210

149 49.2 202 42 181 198 174 183 200 180 195 179 186

147 55.2 202 172 188 178 185 191 192 184 189 173 171

146 70.7 202 193 196 194 170 197 169 182 187 199 190 175

150 93.2 202 176 177 119 125 111 131 128 135 132 124 27

148 100.1 202 7 126 123 121 109 31 3 156 157 149

149 64.5 202 161 145 140 151 158 146 154 139 19

145 73.3 202 164 159 142 166 155 144 167 143 163

150 72.3 202 147 148 150 141 153 165 162 152 160 168 20

111 29.9 207 99 86 95 35 88 98 83 84

149 45.6 207 14 107 100 90 105 92 79 97 96 89

120 31.0 207 87 104 91 81 80 101 94 93 108

149 87.5 207 30 37 32 77 82 85 103 106 78 102

146 58.0 209 45 73 55 57 54 50 69 63 46 62

147 49.3 209 61 68 71 64 74 59 60 66 65

144 60.4 209 51 48 52 49 75 58 76 44 18

140 122.0 209 22 17 16 26 40 5 33 39

145 87.3 210 6 24 47 70 72 53 56 67 25

149 70.3 210 138 113 117 133 136 110 134 130 41

150 80.7 210 129 120 29 118 114 115 137 127 10

147 113.4 210 28 9 11 15 21 4 116 112 122 43

145 140.6 210 12 2 38 1 23 8 34 36 13
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